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ABSTRACT: The C−C bond of cyclobutanones under-
goes oxidative addition to a T-shape rhodium(I) complex
possessing a PBP pincer ligand at room temperature. The
remarkable propensity of the rhodium complex for
oxidative addition is attributed to the highly electron-
donating nature of the boron ligand as well as the
unsaturation on the rhodium center.

Selective activation of nonpolar σ-bonds between two
elements of similar electronegativities, like C−H1 and C−

C2 bonds, has gained increasing attention in organic chemistry.
Whereas a wide variety of transition metal-mediated or
-catalyzed reactions cleaving C−H bonds have been developed
in the past decade, examples of C−C bond cleavage with
transition metal complexes are much fewer, probably due to the
kinetic inertness of C−C bonds. Considerably harsh reaction
conditions are generally required for their cleavage. Herein, we
report a striking example of oxidative addition of a C−C bond
to rhodium(I) that occurs even at room temperature.
We recently reported the synthesis of an infinitely networked

T-shape 14-electron rhodium(I) complex 1 possessing a PBP
pincer ligand (Figure 1).3 It showed a remarkable reactivity at

the rhodium center to insert into O−H bonds of phenols and
primary alcohols through a rapid dissociation of its polymeric
form into the corresponding monomeric form of T-shape
complex. This reactivity suggested that the strongly electron-
donating boryl ligand4 enhanced the electron density on the
rhodium center to facilitate its insertion into the polar O−H
bonds. We next examined the reactivity toward nonpolar
strained C−C bonds. Thus, [PBP]Rh(H)(OTf) complex was
initially treated with Me3SiCH2Li in C6D6 under an argon
atmosphere. The resulting [PBP]Rh(I) complex 1 was treated
with cyclobutanone 2, and the mixture was stirred at room

temperature for 72 h (Scheme 1). Rhodium carbonyl complex
3 (79% NMR yield) was generated along with cyclopropane 4
(81% NMR yield). No intermediary complexesexcept for the
starting rhodium complex 1 and the resulting carbonyl complex
3were observed by 31P NMR analysis during the course of
the decarbonylation reaction.
The formation of 3 and 4 from 1 and 2 is explained by

assuming a stepwise mechanism depicted in Scheme 2. The

carbonyl group of 2 initially coordinates to the electron-rich
and coordinatively unsaturated rhodium center of 1. The σ-
bond between the carbonyl carbon and its α-carbon undergoes
oxidative addition onto the rhodium(I) center to generate the
five-membered ring acylrhodium(III) species A. The CH2
group of A migrates onto rhodium with a carbonyl ligand left
out to form four-membered ring rhodacyclobutane B.
Reductive elimination gives rise to rhodium carbonyl complex
3 and cyclopropane 4. The oxidative addition is suggested to be
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Figure 1. Structure of rhodium complex 1.

Scheme 1. Reaction of Cyclobutanone 2 with 1

Scheme 2. Plausible Mechanism for the Formation of 3 and
4 from 1 and 2
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the rate-determining step, and the ensuing steps would follow
spontaneously. The hexa-coordinated complex B would be
thermodynamically unstable due to the repulsive force which
the four t-Bu groups extend to the other ligands. In contrast,
the tetra-coordinated complex 3 is less congested and gain
stabilization due to π-back-donation from Rh to CO ligand, and
therefore, would be thermodynamically far more stable. This
would provide a major driving force for reductive elimination of
cyclopropane.
An analogous decarbonylation reaction of cyclobutanones is

mediated by various rhodium(I) complexes bearing PPh3 or
NHC ligands.5,6 It generally requires refluxing in toluene or in
xylene, even when a stoichiometric amount of a rhodium(I)
complex is used. The [PBP]Rh complex 1 is apparently more
active. We assume that the strongly σ-donating nature of the
boryl ligand7 as well as the unsaturation on the metal center8

facilitates the intrinsically sluggish oxidative addition of the C−
C σ-bond.
We next examined the reaction of 1 with benzocyclobute-

none 5. Again, oxidative addition occurred at room temperature
and single crystals of the resulting complex were successfully
obtained using a benzene/hexane solution for recrystallization.
An X-ray crystallographic analysis revealed that the bond
between the carbonyl carbon and the sp3 α-carbon was site-
selectively cleaved to afford five-membered acylrhodium(III)
complex 6 (Scheme 3, Figure 2). Although an analogous

reaction of benzocyclobutenone with ClRh(PPh3)3 has been
reported by Liebeskind et al.,9 the reaction requires heating at
130 °C, and oxidative addition occurs with both the C(CO)−
C(sp3) and C(CO)−C(sp2) bonds to afford a mixture of
isomeric products. Thus, the PBP pincer ligand not only
accelerates the C−C oxidative addition but also confers the site-
selectivity probably due to the bulky P(t-Bu)2 groups. Whereas
the assumed intermediate A underwent elimination of CO and

reductive elimination in the reaction of 2, the complex 6 failed
to go through those steps. We presume that this difference
arose because the possible reductive elimination product
resulting from the complex 6 is energetically too high.
Two independent molecules of complex 6 with almost

identical structure were contained in the asymmetric unit. The
acyl ligand is located on the apical position of a distorted square
pyramidal structure. A vacant coordination site located trans to
the acyl ligand is effectively blocked by the two bulky t-Bu
groups in the pseudoaxial positions. The Rh−B [av. 2.044 Å]
and Rh−P [av. 2.3588 Å] bonds of 6 are slightly longer than
those of 1 [Rh−B, 1.948(3) Å; Rh−P, av. 2.2958 Å],3a probably
due to the steric repulsion between the rhodabenzocyclopente-
none moiety and PBP ligand. Whereas the CO (av. 1.212 Å)
and Rh−C(benzoyl) (av. 1.995 Å) lengths are within their
typical values,9,10 the Rh−(η1-benzyl) bond (av. 2.213 Å)
located trans to boron is considerably longer than typical Rh−
(η1-benzyl) bonds,9,11 clearly indicating a strong trans influence
of the boryl ligand.
The 1H NMR spectrum in C6D6 showed two signals of the t-

Bu groups. This magnetic inequivalency is consistent with its
Cs-symmetrical structure in the solid state. The 13C NMR
spectrum exhibits a resonance assigned to the carbonyl carbon
at δC 211.6 with two distinct couplings of 1JRhC (d, 33 Hz) and
2JPC (t, 5 Hz). The signal of the methylene carbon derived from
benzocyclobutenone was observed at δC 23.5 with couplings of
1JRhC (d, 26 Hz) and

2JPC (t, 6 Hz). In the
31P NMR spectrum, a

doublet signal (δP 93.7) with
1JRhP of 139 Hz was observed. The

coupling constant is smaller than that of 1 (1JRhP = 192 Hz),
which reflects weaker π-back-donation from the Rh(III) center
than that from Rh(I). The 11B nucleus resonated at around 53
ppm. This value is similar to those of [PBP]Rh(CO) and
[PBP]Rh(CH2CH2) rather than those of [PBP]Rh(H)(Cl)
and [PBP]Rh(H)(OTf), which possess interaction between
boron and hydride atoms.3a The strong signal observed at 1639
cm−1 in the IR spectrum was similar to those of the related
acylrhodium complexes, in accordance with νCO values
predicted by DFT calculation.12

The reactivity of various alcohols toward the rhodium
complex 1 was examined in our previous study.3a Whereas
primary alcohols underwent oxidative addition, secondary
alcohols such as cyclohexanol and 2-propanol failed to react
with 1. Much to our surprise, 3,3-diphenylcyclobutanol 7,
slightly smaller than cyclohexanol because of the strained four-
membered ring, facilely reacted with 1 in C6D6 at room
temperature to generate the new rhodium hydride complex 9
together with unidentified byproducts (Scheme 4). This is the
first example of oxidative addition of the O−H linkage of
secondary alcohols to 1. Furthermore, the ring-opened alkane
11 (10%) was generated together with rhodium carbonyl
complex 3 (16%) upon heating at 80 °C.13 It is assumed that
the rhodium(III) hydride complex 9 undergoes β-hydride
elimination to form rhodium(I) dihydrogen complex C.14

Subsequent oxidative addition affords (dihydrogen)-
rhodacyclopentanone intermediate D. The carbon−rhodium
bond of D is hydrogenolyzed to produce E. Migratory
elimination of a carbonyl group forms F and subsequent
reductive elimination gives 3 and 11. The reaction with N-
toluenesulfonyl azetidinol proceeded more cleanly to afford
carbonyl complex 3 (75%) and dimethylamide 12 (65%).
In summary, we disclose that a thermally stable C−C bond of

cyclobutanones was cleaved, even at room temperature, by
oxidative addition onto T-shape [PBP]Rh complex 1. Crystallo-

Scheme 3. Stoichiometric Reaction of Rhodium Complex 1
with Benzocyclobutenone 5

Figure 2. ORTEP drawing of 6 (50% thermal ellipsoid, hydrogen
atoms and one of two independent molecules are omitted for clarity)
Selected bond lengths (Å) and angles (°) as averages: B−Rh 2.044,
Rh−C(acyl) 1.955, C(acyl)O 1.212, Rh−C(benzyl) 2.213, Rh−P
2.3588, B−N 1.430, B−Rh−C(benzyl) 174.89, P−Rh−P 151.10, N−
B−N 105.4.
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graphic analysis of the C−C cleaved product revealed its
distorted square pyramidal structure with the acyl ligand on the
apical position in the solid state. This work demonstrates that
T-shape [PBP]Rh complex 1 possesses a high propensity for
oxidative addition of nonpolar C−C σ-bonds as well as polar
O−H bonds.
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